Data Structures and
OOP

Section 1D

Structures

® A structure is a collection of related variables that
may be of several different data types.

[User-defined data type

struct|Card
{ -

const char *suit;| // A pointer to a constant cha P&(C string).
int face; // A number between 1 and 13. &

};

©

A\ Properties or data members ‘ &

Using struct data types

Card c1; // Create a card

cl.suit = "Hearts"; // Fill out data members dot operator
cl.face = 3;

Card c2; // Create another card

c2 = cl; // Assign member—to-member EERIFLIITL
c2.suit = "Spades";

Card deck[52]; // An array of cards

deck[@].suit = "Diamonds";

deck[0].face = 1;

arrays

—

——

—_—l

Using struct data types

Card *cPtr; // A pointer to a card

cPtr = &cl,;

(xcPtr).face = 1; // Modify a member using '.’
cPtr->face = 7; // Modify a member using '—>'

references

Card& cRef = c2; // Reference to card
cRef.face = 13;

Exercise 1

® Write a function that prints the face and suit of a
card in the following format:

® “Yourcardisa# of$”, where # is the face, and $ is
the suit of the card.

® Try with two choices of input:
® A constant reference to a card object.
® A pointer to a constant card object.

We have declared a deck of 52 cards as follows: 0

Exercise 2
Card deck[52];

Write a function that initializes this deck to 13 cards per suit.
This function should also receive the array of C strings:

{ “Hearts”, “Diamonds”, “Clubs”, “Spades” }

Write a function that shuffles the cards; that is, randomly
swaps cards within the deck we declared above.

2-{7‘ - -
é

Exercise 3

® Find the error(s) and propose a solution!

() Card xcPtr = &deck[2]; struct Person {

Eﬁ cout << *cPtr->face; ((:) char lastName[15]
char firstName[15]
int age;

}
(t)) Card hearts[13]; ((j) Person p;
hearts.suit = “Diamonds”; Card d;

p = d;

Object Oriented Programming

® The OOP models real world objects through software. It
encapsulates data (attributes) and functions (behavior) in
packages called objects.

® Objects have the property of hiding information, but they can
communicate with their surroundings (other objects) by well-
defined interfaces.

OPP struct example

struct |[Time<——— User-defined data type

{

private:

B Can be accessed only

within member functions

data members

public:

< Can be accessed from outside the object

member functions

Defining Time's functions

// Constructor.
Timd: :Time()

Scope operator : :

Vo -
hour = minute = second = 0;

void Time::setTime(int h, int m, int s)

}

// Set time.

{
hour =
minute
second

((h>=08&& h <=23)? h: 0;
0 & m <= 59)? m: 0;

(m>=
(s >=

0 & s <= 59)? s: 0

How do we define?
void print24();
void printAMPM();

Creating Time's instances

Time sunset;
sunset.hour = 20;
sunset.minute = 5;
sunset.second = 30;
sunset.setTime(20, 5, 30);

Time *sunsetPtr = &sunset;
(xsunsetPtr).print24();

Time& sunsetRef = sunset;
sunsetRef.printAMPM() ;

Time mealTimes[3];
mealTimes [0].setTime(11, 0, 0);

(x(mealTimes+1)).setTime(16, 30, 0);
(mealTimes+2)—>setTime(22, 30, 30);

// Error!!l
// Error!!l
// Error!!!

//

//

//

//
//
//
//

Object

Pointer

Reference

Array
Breakfast
Lunch
Dinner

Creating Time’s const Instances

® |s this code correct?
const Time midnight;

midnight.setTime(@, 0, 0); // Error!!!
midnight.print24(); // Error!!l
midnight.printAMPM(); // Error!!!

* We need to fix the ?t"UCt Time
member. functions private:
declaration and int hours; /] @ — 23.
definition: int minute; // @ - 59,

int second; // 0 — 59,

J
/g i
/ 0! [] /////.

Q
.\\\ i |2 (%,
=10 24
: 3
z s
V‘lﬁ ./8 F
A\ N

Time();
void setTime(int, int, int);
void print24() const;

void printAMPM() const;

Exercise 4

® Write a member function to the struct Time, that
receives another Time object and returns:

e Qif input object and receiver object are equal.

e +1 if receiver object is greater than input object.
e -1 if receiver object is smaller than input object.

int Time::compare(const Time& in) const

Today’'s Material

® Find this material and the answers to programming
exercises at:

http://cs.ucla.edu/~langel/cs31/session8

